

Probing brown dwarf formation mechanisms with Gaia

Richard Parker¹

Collaborators: Morten Andersen², Jerome Bouvier², Thomas Maschberger², Catarina Alves de Oliveira³, Nick Wright⁴, Simon Goodwin⁵, Michael Meyer¹, Estelle Moraux², Richard Allison^{5,6}, Sylvain Guieu⁷, Manuel Güdel⁸

- 1 ETH Zürich, Switzerland (email: rparker@phys.ethz.ch)
- 2 IPAG, Grenoble, France
- 3 ESA, Madrid, Spain
- 4 Hertfordshire, UK
- 5 University of Sheffield, UK
- 6 ITA, Heidelberg, Germany
- 7 ESO, Chile
- 8 University of Vienna, Austria

Open questions:

- 1. Do brown dwarfs form more "like stars", or "like planets"?
- 2. How can we test their formation mechanism(s)?
 - a) Spatial distributions
 - b) Velocity information

Open questions:

- 1. Do brown dwarfs form more "like stars", or "like planets"?
- 2. How can we test their formation mechanism(s)?
 - a) Spatial distributions
 - b) Velocity information
- We need to apply consistent methods for a)
- We need *Gaia* for b)
- We need N-body simulations to test both a) and b)

Mass segregation: Λ_{MSR}

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

(also Maschberger & Clarke 2011, Olczak et al 2011)

Mass segregation: Λ_{MSR}

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Allison et al 2009

Local surface density: Σ - m

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Maschberger & Clarke 2011

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

BDs in nearby regions: Taurus

- Data compiled for XEST survey & updated from recent surveys (Güdel et al 2007).
- Red = 20 most massive objects.
- Blue = 20 least massive objects.

RA

BDs in nearby regions: Taurus

Both Λ_{MSR} and $\Sigma-m$ consistent with stars

Parker et al 2011

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

BDs in nearby regions: p Oph

- Data from Alves de Oliveira et al (2012)_{-24.2} and other sources
- Red = 20 most massive objects.
- Blue = 20 least massive objects.

BDs in nearby regions: p Oph

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Both Λ_{MSR} and Σ – m consistent with stars

Parker, Maschberger & Alves de Oliveira 2012

BDs in nearby regions: ONC (some of it)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Data from Andersen et al 2011
- Decreasing fraction of stars/BDs (R_{SS})
- Brown dwarfs have different spatial distribution?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich BDs in nearby regions: ONC (some of it)

 Λ_{MSR} consistent with stars, Σ - m shows differences

Parker & Andersen (in press)

N-body simulations

- Cool and clumpy (Virial ratio = 0.3, fractal dimension 1.6)
- Hot and clumpy (Virial ratio = 1.5, fractal dimension 1.6)
- Tepid and smooth (Virial ratio = 0.5, fractal dimension 2.6)
- Simulations: 1500 stars in a cluster
- Maschberger (2013) IMF
- Evolved for 10 Myr with **Starlab** (Portegies Zwart et al 1999)
 - a) All single stars
 - b) Field-like binaries (Raghavan et al 2010, Bergfors et al 2012, Janson et al 2012, Duchene & Kraus 2013)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

N-body simulations

- Dynamical evolution *can* give different spatial distributions (Parker & Andersen, in press)
- To determine whether the differences are only due to dynamical evolution, we need more information on the region's evolution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

N-body simulations

- Dynamical evolution *can* give different spatial distributions (Parker & Andersen, in press)
- To determine whether the differences are only due to dynamical evolution, we need more information on the region's evolution

Clusters versus associations?

Evolution of structure and morphology

Measuring structure - evolution of the Q-parameter in a collapsing (cool) fractal cluster:

 Dynamics rapidly erases substructure (Scally & Clarke 2002; Goodwin & Whitworth 2004; Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer 2014)

Evolution of structure and morphology

 Measuring structure - evolution of the Q-parameter in an unbound (hot) association:

(Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer 2014)

Structure versus mass segregation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

(Parker, Wright, Goodwin & Meyer 2014)

Using surface density to probe evolution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Σ – m technique (Maschberger & Clarke 2011):

- Determine the local density of every star.
- Compare to the local density of the massive stars:

$$\Sigma_{\text{LDR}} = \Sigma_{\text{massive}} / \Sigma_{\text{cluster}}$$

(Küpper et al 2011, Parker, Wright, Goodwin & Meyer 2014)

Structure versus surface density

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dense and cool

Dense and hot

(Parker, Wright, Goodwin & Meyer 2014)

Structure versus mass segregation

Different dynamical histories?

Blue: Ber96 Red: Ber94

(Delgado et al 2013)

Ejected stars with Gaia

- Define an ejection:
 - velocity magnitude > escape velocity
 - radial velocity > tangential velocity
 - position is beyond a cropping distance

(moving fast enough, in right direction, and far enough away)

Cool & clumpy; 0Myr

Tepid & smooth; 0Myr

Cool & clumpy; 4Myr

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Tepid & smooth; 4Myr

Velocity (km/s)

(Allison 2012)

- BDs may have different spatial distributions to stars in some nearby star-forming regions, but not all
- More than one measure should be used to look for differences
- Dynamical evolution can lead to differences
- However, different initial conditions for star formation give very different spatial distributions in clusters/associations
- Strong dynamical evolution betrayed by mass segregation and high local surface densities around massive stars
- Gaia will help us to probe formation mechanisms