Detection and Characterization of Brown Dwarfs in the Gaia Catalogue

Luis Sarro (on behalf of the Gaia DPAC CU8)

Block 1 – Gaia Context: Instruments → DPAC → CU8/Apsis → ESP-UCD

Block 2 – The ESP-UCD module in detail: Principles and performance

Block 3 – Estimates of the expected number of UCDs

Block 1 - Context: Apsis

We need a consistent framework as basis for the modelling of the relationship between RP spectra and physical magnitudes \rightarrow BTSettl models

Block 2 - ESP-UCD: Process Module

<u>Block 2 - ESP-UCD: Internal estimate of the</u> prediction errors at G=20

Procedure:

- 1. Use a fixed-step grid of values in Teff/logg and corresponding BT Settl spectra
- II. Add noise to the grid for different values of G
- III. Build models of the map (RP \rightarrow Teff/logg) with various algorithms, and algorithm parameters
- IV. Decide best model/parameters by computing the prediction error for a set of 10000 noisy (G=20) spectra with random parameters not used in the training phase.

<u>Block 2 – ESP: Expected performance as assessed on</u> independent real data sets

Background reasoning: We cannot do better with RP than we would with better resolution spectra in the same wavelength range

We compute estimates of Teff and logg from (possibly completed) real spectra of UCDs using χ^2

 $RMSE - \chi^2 - full resolution spectra$

Library	μ (BT-Settl)	σ (BT-Settl)	RMSE (BT-Settl)
Leggett	42	196	199
Reid	41	72	143
NIRSPEC	67	177	256
IRTF	53	63	126

RMSE - kNN/GP - RP

Number of transits		28			70	
G	15	18	20	15	18	20
GP-G20	257 (192)	260 (194)	266 (201)	256 (191)	257 (192)	260 (196)
PCA-GP-G20	266 (199)	270 (203)	281 (216)	264 (197)	266 (200)	272 (207)
kNN-G20	209	210	213	207	209	213
PCA-kNN-G20	211	213	215	209	207	210
Bayes BT-Settl	230.5	235.7	239.0	243.4	241.6	239.7
Bayes COND/DUSTY	252.6	252.3	255.0	257.5	257.6	258.0

Procedure:

- . Asume local density as a function of spectral type (Caballero et al. 2008)
- II. Asume a map between spectral types and temperatures (Stephens et al. 2009)
- III. Asume a map between effective temperatures and absolute magnitudes
- For each spectral type compute the distance r at which a source would have G=20.

v. E[counts]=Density x Volume(r)

Settl models

λ

What known UCDs will we see with Gaia?

Cross match of Dwarf Archives with SDSS and UCAC

- 1281 sources in Dwarf Archives
- 948 with cross matches in SDSS/UCAC4
- 587 below 2 arcsec
- 484 below 1 arcsec
- 227 below 0.2 arcsec

What known UCDs will we see

with Gaia?

What known UCDs will we see

with Gaia?

What known UCDs will we see with Gaia?

Corrected for the fraction of sources without counterparts.

sources @ Dwarf Archives

SFR	Distance	Age	Dimmest MI	Mass	Teff	Sp Type
rho Oph	120-145 pc	1 Myr	13.05	10	2247	LO
Taurus	140 pc	1-2 Myr	12.70	16	2364	M9
Serpens	260 pc	2 Myr	11.38	27	2563	M8
Cha I / II	140 pc	1-3 Myr	12.70	18	2394	M9
Lupus I / II / III	140 pc	1-3 Myr	12.70	18	2394	M9
IC348	385 pc	2-4 Myr	10.54	37	2703	M7
Tr37	800 pc	4 Myr	7.83	201	3232	M7
Sigma Ori	400 pc	3-5 Myr	10.45	42	2752	M7
Collinder 69	400 pc	5-10 Myr	10.45	49	2794	M7
Upper Sco	145pc	5 Myr	12.62	21	2435	M8
NGC7160	800 pc	10 Myr	7.83	317	3380	M7
IC2391	175 pc	30-55 Myr	12.21	45	2635	M7
IC2602	160 pc	30-50 Myr	12.41	42	2601	M7
IC4665	350 pc	45 Myr	10.77	91	2950	M7
Alpha Per	185 pc	80 Myr	12.09	60	2707	M7
Blanco 1	270 pc	100 Myr	11.31	83	2876	M7
Pleiades	150 pc	125 Myr	12.55	58	2638	M7
Hyades	50 pc	600 Myr	14.99	37	2202	LO
Praesepe	187 pc	800 Myr	12.07	72	2750	M7

- DR1: L+22M RA, Dec, G, HTPM (Hipparcos), 90% single sources
- DR2: L+28M DR1 + PPM & parallax (90% sky), BP & RP, APs, V_{rad} (90% bright stars)
- DR3: L+40M DR2 + binaries + Class & APs + RVS
- DR4: L+65 DR3 + Variability + SSO + non-single
- FR: End-of-mission + 3 years