A focus on L dwarfs with measured parallax

Youfen Wang R. Smart , H. Jones et al. National Observatory of China March 27th

yfwang@bao.ac.cn

outline

- 1.Introduction
- 2.Sample
 - 2.1 Liverpool Telescope parallax results
 - 2.2 Literature objects
- 3.Binarity of the Liverpool Telescope targets
- 4. kinematics of this L dwarf sample
- 5.Gaia magnitude of this sample

1. Introduction

- Importance of Parallax (and proper motion)
- DwarfArchive~ 1300 L and T
- Number of L dwarfs ~900
- To see property of L population²⁵⁰

2. Sample

- 2.1 Liverpool Telescope parallax results 2.1.1 Data
- Telescope --aperture 2-m, SDSS z band 2K*2K CCD
- Targets-from DwarfArchive --no parallax in 2004
 -- brighter z~18-- with smallest photometric distance
- Observations -- mainly 2008 -- 2011--2.5+ years
- Defringe, Centroids-CASU(precision), Wang et al. 2014

Table: targets

Table 1. Observations of the targets.

No., Object	R.A.	Decl.	z-mag	SpT	SpT frames		Binarity
	(h:m:s)	(°:':")	(mag)		(04,08,11,sum)	(yrs)	sep(")
1, SD0423-0414	04 23 48.6	-04 14 04	17.33	L7.5 ¹	0,27,21,48	3.2y	0.614^2
2,2M0717+5705	07 17 16.3	+57 05 43	17.23	$L6.5^{3}$	0,42,6,45	2.9y	-
3, SD0758+3347	07 58 40.3	+32 47 23	17.97	$T2^4$	3,38,33,74	3.4	-
4, SD0857+5708	08 57 58.5	+57 08 51	17.74	L8 ⁵	0,45,18,63	3.2y	-
5, SD1017+1308	10 17 07.5	+13 08 40	16.74	L36	0,26,10,36	3.5y	0.104^{7}
6, SD1104+1959	11 04 01.2	+19 59 21	17.22	L4 ⁶	0,39,24,63	3.5y	-
7, SD1239+5515	12 39 27.2	+55 15 37	17.52	L5 ⁸	0,42,23,67	3.5y	0.21 ⁹
8, SD1300+1912	13 00 42.5	+19 12 35	15.14	L1 ¹⁰	0,18,30,48	3.5y	-
9, SD1515+4847	15 15 00.8	+48 47 42	16.72	L6 ⁶	0,29,30,59	3.5y	-
10, SD2028+0052	20 28 20.3	+00 52 26	17.04	L3 ¹ 1	0,30,40,70	3.8y	-

Note. The coloum for magnitude, italic indicate estimated magnitude, roman indicate SDSS-z magnitude. References. ¹Kirkpatrick et al. (2008),²Burgasser et al. (2005),³Faherty et al. (2009),⁴Burgasser et al. (2006), ⁵Geballe et al. (2002),⁶Cruz et al. (2003),⁷Bouy et al. (2003),⁸Kirkpatrick et al. (2000), ⁹Gizis et al. (2003),¹⁰Gizis et al. (2000),¹¹Reid et al. (2008).

2. Sample

- 2.1.2 parallax and proper motion
- Software-- Torino Observatory Parallax Program (Smart et al. 2003, 2007) -- relative to absolute: Galaxy model of Mendez & van Altena(1996).
- Parallax and proper motion results, calibration with the literature ones:

Figure -- parallax ellipse

Fig. 1 Observations over-plotted with the parallax solution of D0857+5708

Table-parallax results

Table 2. Parallax and proper motions for the seven L/T dwarfs.

Obj. Name	N_1, N_2	Δt	π	COR	$\mu_{\alpha} cos\delta$	μ_{δ}	π	$\mu_{\alpha} cos\delta$	μ_{δ}
SD0423-0414	50,13	4.33	66.3±3.7	1.5	-325.6±1.8	83.1±1.5	73.3 ± 1.4^{1}	-325.3±1.0	93.1±0.9
2M0717+5705	48,27	4.22	46.4±2.3	1.4	-18.0±1.6	54.3±1.3	-	-17.99±17.87	67.17 ± 15.13^3
SD0758+3347	62,16	4.18	106.9 ± 4.6	1.5	-230.7±1.7	-327.7±2.1	-	-204.23±18.01	-316.21±12.42 ³
SD0857+5708	71,9	4.15	98.0 ± 2.6	2.0	-400.0±1.7	-374.9±1.7	-	-413.61±20.52	-353.43 ± 16.85^3
SD1017+1308	55,5	4.10	32.3±2.8	2.5	61.0±1.4	-116.3±1.5	30.0 ± 1.6^{1}	44.1±0.7	-114.3±0.6
SD1104+1959	66,5	4.08	66.2±1.9	2.2	55.9±0.7	126.6±0.7	-	75	139 ⁴
SD1239+5515	43,6	4.04	45.0±2.1	2.0	131.7±2.0	-2.6±1.4	42.4 ± 1.7^{1}	125.2±1.1	0.04 ± 1.1
SD1300+1912	42,10	3.48	76.4±1.8	2.0	-789.0±1.1	-1237.2±1.0	-	-784	-1255 ⁵
SD1515+4847	43,6	3.46	123.8 ± 5.0	1.7	-930.4±4.1	1469.3±2.2	-	-950	1471 ⁴
SD2028+0052	54,79	3.74	39.1±1.6	1.2	96.9±0.8	-9.0 ±0.8	-	114	7 ⁴

2. Sample

- we collect a sample L dwarfs with measured parallax and proper motions from the literature --Dupuy & Liu 2012 online compendium, Marocco et al. 2013,Sahlmann et al. 2014 and Wang et al. 2014 (5 targets have parallax derived from Liverpool telescope)--170 of L to T2 dwarfs
- 2MASS, WISE and Gaia G magnitudes, parallax and proper motion are collected or calculated
 - WSIE magnitudes are updated allwise new data

3.Binarity of the Liverpool Telescope targets

Fig.2 SpT-mag diagram in 2MASS system.

 Black solid circles -- the literature single objects(non Liverpool Telescope objects)

 Red asteris -- 5 Liverpool
 Telescope targets(10 this paper, five Wang et al.2014)

 Small blue asterisks -- known literature binaries,

• Large blue asterisks -suspected binaries in this paper.

Fig.3 SpT-mag diagram in WISE system. Same symbols for this figure

- The new fitting red line has small different with the Dupuy & Liu one.
- Two suspected equal mass binary : 2M0717+5705 and SD2028+0052-further confirmation

4.Kinematics of this L dwarf sample

- Parallax, proper motion, radial velocity (assuming 0) >> U V W velocity no STR correction
 - Component affected the most leave blank, two components derived for each object
- Average <U,V W>= -11.1, -15.1, -10.7
- σfor U V W= 32.1, 32.0,16.2
- Compare with literature: $(\sigma_{\sigma}, \sigma_{\nu}, \sigma_{\nu}) = (33.8, 28.0, 16.3)$ Seifahrt et al. (2010).

U V W velocity table (a portion of the whole)

Name	$\mu_{\alpha} cos\delta$	$e_{\mu_{\alpha} cos\delta}$	μ_{δ}	$e_{\mu_{\delta}}$	Dist.	e _{Dist} .	Ref	U	V	W
2M0717+5705	-18.0	1.6	54.3	1.3	21.6	1.1	1	_	5.57	-0.72
SD2028+0052	96.9	0.8	-9.0	0.8	25.6	1.0	1	-6.17	_	-10.05
SD0423-0414	-325.6	1.8	83.1	1.5	15.1	0.8	1	_	19.08	-14.11
SD1017+1308	61.0	1.4	-116.3	1.5	31.0	2.7	1	14.04	-13.24	_
SD1239+5515	131.7	2.0	-2.6	1.4	22.2	1.0	1	11.92	7.04	_
SD1300+1912	-789.0	1.1	-1237.2	1.0	13.1	0.3	1	1.62	-90.67	_
2M0141+1804	405.2	1.1	-48.7	0.9	22.8	1.1	1	-31.86	-30.19	_
SD1717+6526	150.2	1.0	-109.3	0.6	17.5	1.1	1	10.33	_	-8.95
2M1807+5015	27.2	1.0	-130.2	1.5	12.9	0.3	1	7.66	_	-2.73
2M2238+4353	324.3	0.5	-121.0	0.4	18.5	0.6	1	-18.24	_	-22.86
2M2242+2542	382.0	0.9	-64.6	0.7	20.9	1.2	1	-28.44	_	-22.64
SD0758+3347	-230.7	1.7	-327.7	2.1	9.4	0.4	1	_	-12.01	-12.32
SD0857+5708	-400.0	1.7	-374.9	1.7	10.2	0.3	1	_	-16.66	-12.03
SD1104+1959	55.9	0.7	126.6	0.7	15.1	0.4	1	-0.19	9.43	_
SD1515+4847	-930.4	4.1	1469.3	2.2	8.1	0.3	1	-66.49	3.64	_
GJ 1001B	643.552	2.418	-1494.312	3.001	13.00	0.70	2	3.526	-99.30	_
GJ 1001C	643.552	2.418	-1494.312	3.001	13.00	0.70	2	3.526	-99.30	

Fig.4 U- V, V-W and W-U space velocity. Each object has only two component of the three.

• Black plus symbols– literature non Liverpool telescope objects

- Red solid circles– 15 Liverpool Telescope targets
- Vertical and horizontal lines indicate 3 sigma limit of the U VW.
- Black plus
 exceeding the 3 sigma
 limit are literature sub
 L dwarfs
- Our targets are clustered with in 3 sigma limits

5.Gaia magnitude of this sample

• We used a 2MASS J- Gaia G relation for different spectral type to derive the G magnitude.

• At least 59 in our L dwarf Sample are brighter than G=20.

Fig. 5 G-number histogram.

Conclusion

 Parallax of ten L/ early T dwarfs with 2 meter Liverpool Telescope

• SpT-mag diagram-- 2 suspected equal mass Binaries

• U V W velocity scatter for L dwarfs consistent with literature

 Gaia G magnitude & Nearly a half (59 out of 170) observable to Gaia

further work

• Temperature of the ten Liverpool Telescope

Confirmation of the two suspected binaries
 Thanks!
 vfwang@b

yfwang@bao.ac.cn