

Proper motions and brown dwarfs in the VVV survey

Juan Carlos Beamín

Collaborators:

Dante Minniti, Valentin Ivanov, Radostin Kurtev, Rene Mendez, Mariusz Gromadzki, Karla Peña, Roberto Saito, Philip Lucas, Jura Borissova...

2 VVV images separated by 2 years

Spot all the differences

Give us hints about:

How much mass is in stars

Give us hints about:

How much mass is in stars

Types of stars, multiplicity & IMF

Give us hints about:

How much mass is in stars

Types of stars, multiplicity & IMF

Brown dwarfs and planet conection

Give us hints about:

How much mass is in stars

Types of stars, multiplicity & IMF

Brown dwarfs and planet conection

Astrometric characterization, age, atmospheres, etc...

Gaia is AWESOME... but...

... Still need help? Where?

Crowded fields (only V~18?)

Interesting for microlensing!

Also in extincted regions

Gaia is AWESOME... but...

... Still need help? Where?

Crowded fields (only V~18?)

Interesting for microlensing!

How can we help?? Extincted regions

VISTA PUBLIC SURVEYS VISTA VARIABLES IN THE VIA LACTEA

VVV

VISTA Filter system

The VVV survey

A seven year Project

4m NIR VISTA telescope

Coverage ~560 sq. Degrees

High spatial resolution

~ 100 epochs in Ks band

Region where we are looking for proper motions

Region where we are looking for proper motions

Manually

Manually

Automatically

Comparing several catalogs of stars

Manually

Pros:

Certainty

Brighter objects

Hard to miss the fastest objects.

New companions to nearby HPM stars

Red 2MASS, Blue VVV (10 years baseline)
7 new companions to stars with PM>200mas/yr
(total sample in VVV area 167)

New companions to nearby HPM stars

Red 2MASS, Blue VVV (10 years baseline)
7 new companions to stars with PM>200mas/yr
(total sample in VVV area 167)

4% incompleteness of an incomplete list!

Manually

Automatically

Pros:

Pros:

Certainty

Same process for all images

Brighter objects

Detect fainter objects

Hard to miss the fastest objects.

Wide range of velocities

Faster (once software is "up and running")

Pursuing the "best" method to detect proper motions

Semi-automatic procedure:

Choose 4 epochs "evenly" separated.

X-match and select high PM candidates

Constrain and clean some false positives.

Visual inspection of remaining candidates

More cool neighbors.

A nearby unusually blue brown dwarf (BD) towards the galactic center region

Beamin et al 2013 A&A letter

Some "free" extra science with VVV

Signs of variability on this brown dwarf?

More exciting discoveries coming

A new catalog with ~3000 high proper motion objects

Lots of new discoveries to come

Only disk stars with photometry in 5 NIR bands

Lots of new discoveries to come

Only disk stars with photometry in 5 NIR bands

Parallax measurements

Parallax and proper motion of the new Brown dwarf at 17.5 pc

Parallax measurements

Parallax of the new Brown dwarf at 17.5 pc

Next Goals: Going Fainter

Do PSF photometry on each VVV field $(16 \times 6 \times 350 \times 50-100) = 1.6 - 3.5$ Million images

Next Goals: Fainter, and better

Do PSF photometry on each VVV field $(16 \times 6 \times 350 \times 50-100) = 1.6 - 3.5$ Million images

Fit 5 astrometric parameters to every detection. (~10° objects, ~100 epochs)

Next Goals: Fainter, and better

Do PSF photometry on each VVV field $(16 \times 6 \times 350 \times 50-100) = 1.6 - 3.5$ Million images

Fit 5 astrometric parameters to every detection. (~10⁹ objects, ~100 epochs)

Clean the final PM-Parallax catalog, and look for the UCD

Characterization of "red" high proper motion objects

Characterization of "red" high proper motion objects

Analyzing HPM objects with red colors and GLIMPSE "clean" detections

Characterization of "red" high proper motion objects

Analyzing HPM objects with red colors and GLIMPSE "clean" detections

```
15+ intersting red objects (mid M dwarfs) with companions? Disks? Young? ...
```

+ few more L type brown dwarf candidates

Future follow up with Gaia

New discoveries in crowded areas are very interesting targets for astrometric microlensing with Gaia? 1

Towards a kinematic understanding of our Galaxy

We plan to build a proper motion catalog based in NIR data alone.

...because the bulge is... complicated

Z

...because the bulge is... complicated

Ks

Towards a kinematic understanding of our Galaxy

We plan to build a proper motion catalog based in NIR data alone.

Determine the shape and kinematics of the Galactic bulge

Towards a kinematic understanding of our Galaxy

We plan to build a proper motion catalog based in NIR data alone.

Determine the shape and kinematics of the Galactic bulge

Distinguish different stellar populations, and clusters of stars, across the bulge and disk

We plan to build a proper Effection catalog based in NIR data along. Determination of FO Galactic bulge Distinguisi Towards a kinematic understanding

disk

Proper motions and brown dwarfs in the VVV survey

Juan Carlos Beamín jcbeamin@astro.puc.cl And

Dante Minniti, Valentin Ivanov, Radostin Kurtev, Rene Mendez, Mariusz Gromadzki, Karla Peña, Roberto Saito, Philip Lucas, Jura Borissova. and VVV Science Team

A WORD ABOUT PUBLIC OUTREACH

@CINEMA MUSEUM, TORINO

Diagram for explaining the Earth-Moon system centre of gravity and tides

Hand-painted, animated pulley slide William & Samuel Jones, London, ca. 1830

--- CONTINUI

Don't Forget people and new technologies to teach them "old" and cool new science

and maybe stop hearing if 2036 is the end of the world...