Atmospheric structure of brown dwarfs from spectral variability measurements

Esther Buenzli MPIA Heidelberg

Collaborators: D. Apai, J. Radigan, M. Marley, C. Morley, A. Burrows, A. Showman, D. Flateau, I.N. Reid, N. Lewis

Gaia and the unseen workshop, March 25 2014

Background image: Artist impression of a variable T6 dwarf, NASA/JPL

Cloud Evolution

Late L dwarf

Mid T dwarf

Marley 2013

L/T transition models

Increased sedimentation efficiency

Saumon & Marley 2008

Marley et al. 2010

Patchy clouds \rightarrow Variability

Variable L/T transition dwarfs

SIMPJ013656.5+093347

2MASSJ21392676+0220226

Artigau et al. 2009 T2.5 dwarf, 5% variability in J 2.4 h period Radigan et al. 2012: T1.5 dwarf, 26% variability in J 7.8 h period

Light curves can evolve dramatically WISE J104915.57-531906.1 aka Luhman 16

1.05

₫1.00

0.95

≚1.00

Max. Amplitude = 11%

 $0.95 \begin{bmatrix} 0.95 \\ 0.95 \end{bmatrix} \begin{bmatrix} 0.95$

TRAPPIST 60 cm telescope, I+z filter (750-1100 nm), Gillon et al. 2013

Spectroscopic variability with HST

WFC3/IR G141 slitless spectroscopy

 $1.1-1.7~\mu m$ with 9 nm spectral resolution, R~130 Precision on the ~0.1-0.5% level at few min cadence

Need several orbits per target to cover full rotation, gaps...

Variable L/T transition dwarfs: Are they partly cloudy?

L/T transition dwarfs

Data from database of ultracool parallaxes maintained by T. Dupuy

T1.5 dwarf 2M2139

Apai, Radigan, Buenzli et al. 2013

T2.5 dwarf SIMP0136

Apai, Radigan, Buenzli et al. 2013

Ground based spectroscopy of Luhman 16B

Chromatic + achromatic variability components

No differences in smaller spectral bins

Burgasser et al. 2014

Variability does not follow L/T transition

Apai, Radigan, Buenzli et al. 2013

Cloudy vs clear

Marley et al. 2010

Cloud/clearing models don't work...

The curious case of Luhman 16B

GROND (2.2 m) unresolved photometry, Biller et al. 2013

The curious case of Luhman 16B

GROND (2.2 m) resolved photometry, Biller et al. 2013

The first 2D map of a brown dwarf

Crossfield et al. 2014, Nature

Variability beyond the L/T transition: Clouds or other mechanisms?

Variability beyond the L/T transition

Data from database of ultracool parallaxes maintained by T. Dupuy

T6.5 dwarf 2M2228

T6.5 dwarf 2M2228

 \rightarrow The phase is shifted significantly for different wavelengths!

Spectral modeling

Buenzli et al. 2012

Phase shift vs Pressure

Buenzli et al. 2012

Temperature perturbations?

Showman & Kaspi 2013

Robinson & Marley 2014

Temperature perturbations?

Robinson & Marley 2014

How frequent and diverse is spectral variability?

Variability frequency?

HST "Snapshot" survey

Variability trends within 40 min for 22 objects, L5 – T6

Primarily low-level variability:
~ 1% in ~40 min

Buenzli et al. 2014

Variability everywhere?

Low-level variability is common, but multiple percent variability is rare and only occurs in the L/T transition?

Buenzli et al. 2014

Summary

- Cloudy/clear models fail at L/T transition, fast evolving weather
- Temperature perturbations (+clouds?) for mid T dwarfs
- Low-level variability is frequent (>30 %) from mid L to mid T, but strong broad-band variability only at L/T transition?
- Luhman 16 is a unique test case for the L/T transition, observable with Gaia

 \rightarrow Models need to account for 2D and 3D heterogeneities