

## THE LOW-MASS MEMBERSHIP OF THE OCTANS ASSOCIATION

**SIMON MURPHY** ARI/ZAH, UNIVERSITY OF HEIDELBERG WITH WARRICK LAWSON, UNI. OF NEW SOUTH WALES



SIMONMURPHY.ME

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

# THE LOW-MAC BIE FOR GAIA

WARRICK LAWSON, UNI. OF NEW SOUTH WALES

ASTROSMURPH

SIMONMURPHY.ME

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Low-mass and BD members are benchmarks (IMF, DISKS, PLANETS)
- Absolute ages uncertain (x~2)
- Powerful new statistical techniques becoming useful
- Hipparcos and multi-λ surveys
  a game-changer, <u>BUT</u>
- Spectroscopy still vital





3h

- Low-mass and BD members are benchmarks (IMF, DISKS, PLANETS)
- Absolute ages uncertain (x~2)
- More out there than TW Hya, B Pic and Tuc-Hor!





- Two distinct populations, many non-members
- Not just PMs: µ, d<sub>kin</sub>, CMD, RV, Li, low-g, X-ray, IR...







## THE OCTANS ASSOCIATION



# THE OCTANS ASSOCIATION

Mv

- 15 FGK stars, none in *Hipparcos*
- Two visual binaries
- <d> = 141 pc (kinematic!)
- vsin*i* = 20-200 km/s
- Elongated in X dimension
- Age 10-20 Myr?











## OCTANS-NEAR (ZUCKERMAN ET AL. 2013)

- 14 Hipparcos stars at <100 pc with Octans-like UVW</li>
- Lithium and X-ray ages of **30-100 Myr**



## OCTANS-NEAR (ZUCKERMAN ET AL. 2013)

- 14 Hipparcos stars at <100 pc with Octans-like UVW</li>
- Lithium and X-ray ages of **30-100 Myr**



## OCTANS-NEAR (ZUCKERMAN ET AL. 2013)

- Does NOT appear co-eval
- Connection to Octans unclear (SF complex, resonance?)



# THE GOAL

#### IS OCTANS REAL AND WHAT IS ITS AGE?

- Expand membership to lower masses
- Break age/distance degeneracy using independent lithium depletion ages
  - Unlike solar type members, late K and M-type stars should lose their lithium in 10-100 Myr
- Expand membership spatially?

• SPM4 proper motions  $(\delta < -20^{\circ}, BV + JHK_{2MASS})$ 

**100M OBJECTS** 

• SPM4 proper motions  $(\delta < -20^{\circ}, BV + JHK_{2MASS})$ 

100M OBJECTS

• Colour and magnitude cuts to thin sample, remove reddened objects

5.4M OBJECTS

• SPM4 proper motions  $(\delta < -20^{\circ}, BV + JHK_{2MASS})$ 

100M OBJECTS

• Colour and magnitude cuts to thin sample, remove reddened objects

5.4M OBJECTS

- Kinematic selection over d<sub>kin</sub>=[5,300] pc
  - $\sigma(\mu) < 5 \text{ mas/yr}$  and  $\Delta \mu_{Oct} < 2\sigma(\mu)$

200K OBJECTS

• SPM4 proper motions  $(\delta < -20^{\circ}, BV + JHK_{2MASS})$ 

100M OBJECTS

• Colour and magnitude cuts to thin sample, remove reddened objects

5.4M OBJECTS

- Kinematic selection over d<sub>kin</sub>=[5,300] pc
  - $\sigma(\mu) < 5 \text{ mas/yr}$  and  $\Delta \mu_{Oct} < 2\sigma(\mu)$
- X-Match against GALEX DR6 (avoids Galactic plane)

200K OBJECTS

#### 25K OBJECTS

Concentrate on region around existing membership



Concentrate on region around existing membership



• GALEX near-UV selection (after Rodriguez et al. 2011)



RODRIGUEZ ET AL. (2011)

• GALEX near-UV selection (c.f. Rodriguez et al. 2011)



• GALEX near-UV selection (c.f. Rodriguez et al. 2011)



• GALEX near-UV selection (c.f. Rodriguez et al. 2011)



Fold together photometric and kinematic distances



Fold together photometric and kinematic distances







# SPECTROSCOPIC FOLLOW-UP

- R=7000 spectroscopy on SSO ANU 2.3-m/WiFeS
- Image-slicing 25x38" IFU
- 5300-7000 Å (Ha + Li λ6708)
- RVs to 1-2 km/s
- 34 targets in 2014 Jan, another run in May





# SPECTROSCOPIC FOLLOW-UP

- R=7000 spectroscopy on SSO ANU 2.3-m/WiFeS
- Image-slicing 25x38" IFU
- Lesson 5 for Gaia: Hard medicine: Gaia is not a panacea 5300-7000 Å (Ha + Li λ6709)
- RVs to 1-2

## SPECTROSCOPIC FOLLOW-UP

#### GAIA SKY AVERAGED END OF MISSION PERFORMANCE http://www.cosmos.esa.int/web/gaia/science-performance





- 24 stars with RVs within 5 km/s of expected
- Including 6 stars with EW(Li)>100 mA
- Several suspected spectroscopic binaries, and/or fast rotators
- WISE 22µm disk excesses,
  ROSAT detections







# SUMMARY & OUTLOOK

- First low-mass membership of Octans
- Association appears\* to be real and ~30 Myr old
  \* DOES THIS SATISFY THE 'MAMAJEK CRITERIA'?
- Origin and relationship to Octans-Near still unclear
- More M-type members needed
  - ► LDB at spectral type M4/5?
- Gaia will revolutionise young nearby associations across stellar mass



## SUMMARY & OUTLOOK

- First low-mass membership of Octans
- Association appears\* to be real and ~30 Myr old
  \* DOES THIS SATISFY THE 'MAMAJEK CRITERIA'?
- Origin and relationship to Octans-Near still unclear

TO THIS ....

- More M-type members needed
  - ► LDB at spectral type M4/5?
- Gaia will revolutionise young nearby associations across stellar mass