BANYAN: Searching for young objects in the Solar neighborhood

Lison Malo ${ }^{1,2}$, Jonathan Gagné ${ }^{2}$, R. Doyon ${ }^{2}$, D. Lafrenière ${ }^{2}$, É. Artigau 2, G. Feiden ${ }^{3}$, J. Faherty ${ }^{4}$, A. Riedel ${ }^{5}$ \& L. Albert ${ }^{2}$

${ }^{1}$ CFHT, ${ }^{2}$ Montreal U., ${ }^{3}$ Uppsala U., ${ }^{4}$ DTM, ${ }^{5}$ American Museum NY
Gaia and the unseen, March 25th 2014

BANYAN-I: Malo et al. (2013) BANYAN-II: Gagne et al. (2014)

Why searching for young objects near the Sun?

- Confirm the shape of the initial mass function
- Powerful exoplanet imaging
- Knowledge of the distance (Hipparcos, CTIOPI, others studies)
- Understanding the formation mechanisms and stellar evolution
- Undertanding the complex relation between luminosity-mass-age

The Solar neighborhood: Nearby young kinematic group members

- 100 pc region centered on the Sun
- 7 groups within 100 pc and <120 Myr
- T-Tauri, B9-M5 dwarfs and brown dwarfs (total of 184 members)
- Member definition:?
- Share similar kinematics, luminosity \& signs of youth

Global properties of known members: kinematics

- Share same Galactic Space velocities (UVW)
- Projection of the member's motion in the Galactic plane (Johnson \& Soderblom, 1987)
- $\alpha+\delta+\mu_{\alpha}+\mu_{\delta}+R V+$ parallax $=U, V, W+\sigma_{U V W}$
- Share same Galactic positions (XYZ)
- $\alpha+\delta+$ parallax $=X, Y, Z+\sigma_{X Y Z}$

Global properties of known members: luminosity

Finding new members: Kinematic model

- $\mathrm{UVW}+\sigma_{\mathrm{UVW}}+\alpha+\delta+$ parallax $+\sigma_{\text {parallax }}->\mathrm{RV}+\sigma_{\mathrm{RV}}+\mu_{\alpha}+\mu_{\delta}$
- We need good precision on RV measurements (<1km/s)

BANYAN: combinaison of empirical models and statistical

 analysis
7 Young groups

Kinematic \& photometric models

s

\qquad

Statistical analysis
(diff. between predicted and
observed data at each distance)
Predicted values
Membership probability
Statistical Radial
distance
velocity

A powerful method to predict distance

- Application to the previous known members
- Correlation between parallax and our statistical distance within 10\%
- Over-luminosity prediction (binary)

Application to stars and brown dwarf sample

- 1104 K5-M5 dwarfs
- 1061 from Riaz et al. (2006)
- 43 from previous studies
- Showing X-ray, H α or UV emission
- Brown dwarf sample
- Cross-correlation WISE+2MASS
- 360,000 objects with $\mu>10 \mathrm{mas} / \mathrm{yr}$

Results for cool stars sample

- LMS: $\mathbf{2 4 7}$ candidate members with 51 ambiguous members
- BDs: $\mathbf{3 0 0}$ candidate members

Name	β PMG			TWA			THA			COL			CAR			ARG			ABDMG			Field		
	P	P_{v}	$P_{v+\pi}$	P	P_{v}	P_{v+3}	P	P_{v}	$P_{v+\pi}$															
J00171443-7032021	0.0	...	-	0.0	\cdots	-	$99.2{ }^{\text {b }}$	\cdots	**	0.0	\cdots	**	0.0	\cdots	**	0.0	\cdots	**	0.5	\cdots	**	0.3	**.	
J00172353-6645124	99.9	99.9	\ldots	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.4	0.0		0.1	0.0		0.0	0.0	

BANYAN webtools: www.astro.umontreal.ca/~malo/banyan.php or https://sites.google.com/site/mbderg/

Contamination

$-\quad$ TW Hydrae$----\beta$ Pictoris$\cdots \cdots$ Tucana-Horologium$\cdots \cdots \cdots$ Carina$\cdots \cdots \cdots$ Columba$\cdots \cdots \cdots$ Argus$\cdots-\cdots-$ AB Doradus\cdots

with parallax

Gagné et al. (2014)

Radial velocity follow-up for candidates members

- Radial velocity measurements with a precision less than $1 \mathrm{~km} / \mathrm{s}$
- ESPaDOnS (CFHT)
- $\bar{\lambda}=\mathbf{3 9 0 - 1 0 5 0 ~ n m}$
- $R=68,000$ or 81,000
- CRIRES (VLT)
- $\lambda=1.552-1.559 \mu \mathrm{~m}$
- $R=50,000$
- PHOENIX (GEMINI)
- $\lambda=1.552-1.558 \mu \mathrm{~m}$
- $R=52,000$

Malo et al. (accepted)

- $\mathbf{2 1 9}$ measurements -> $\mathbf{1 3 0}$ dwarfs with confirmed RV

Parallax confirmation

- 15 stars from CTIOPI (A. Riedel)
- 5 stars from Shkolnik et al. (2012)
- 3 objects from Weinberger et al. (2013a), Faherty et al. (2013b), Liu et al. (2013a) (Gagné et al. (2014)

Name	$d_{s} \mathrm{c}$ (pc)	$d_{\pi}{ }^{\mathrm{d}}$ (pc)	$P_{\mathrm{v}}{ }^{\mathrm{a}}$ $(\%)$	$P_{\mathrm{v}+\pi^{\mathrm{a}}}$ $(\%)$	Group
$\mathrm{J} 00503319+2449009$	22.5 ± 1.3	$11.8 \pm 0.7^{\mathrm{f}}$	99.99^{b}	0.00	
$\mathrm{~J} 01034210+4051158$	33.5 ± 1.6	29.9 ± 2.0	95.64	96.67	ABDMG
$\mathrm{J} 01112542+1526214$	20.5 ± 1.5	$21.8 \pm 0.8^{\mathrm{e}}$	99.99^{b}	99.99^{b}	β PMG
$\mathrm{J} 01351393-0712517$	35.5 ± 3.1	37.9 ± 2.4	99.99^{b}	99.99^{b}	β PMG
$\mathrm{J} 01365516-0647379$	21.1 ± 1.7	24.0 ± 0.4	99.99	99.99	β PMG
$\mathrm{J} 04141730-0906544$	28.7 ± 1.9	23.8 ± 1.4	99.99	99.99	ABDMG
$\mathrm{J} 04522441-1649219$	16.0 ± 1.2	16.3 ± 0.4	99.99^{b}	99.99^{b}	ABDMG
$\mathrm{J} 05015881+0958587$	38.4 ± 3.9	$24.9 \pm 1.3^{\mathrm{e}}$	99.99^{b}	99.99^{b}	β PMG
$\mathrm{J} 05064946-2135038$	21.9 ± 4.4	$19.2 \pm 0.5^{\mathrm{e}}$	99.99^{b}	99.99^{b}	β PMG
$\mathrm{J} 05064991-2135091$	22.4 ± 0.7	$19.2 \pm 0.5^{\mathrm{e}}$	4.35	99.99	β PMG
$\mathrm{J} 05254166-0909123$	21.8 ± 1.5	20.7 ± 2.2	99.99^{b}	99.99^{b}	ABDMG
$\mathrm{J} 06091922-3549311$	22.5 ± 4.5	$21.3 \pm 1.4^{\mathrm{g}}$	99.99^{b}	99.99^{b}	ABDMG
$\mathrm{J} 10121768-0344441$	12.5 ± 0.0	$7.9 \pm 0.1^{\mathrm{f}}$	0.14	0.00	
J14142141-1521215	16.2 ± 1.2	$30.2 \pm 4.5^{\mathrm{f}}$	99.41	96.92	β PMG
$\mathrm{J} 20434114-2433534$	44.8 ± 3.2	28.1 ± 3.9	99.99^{b}	99.99^{b}	β PMG
$\mathrm{J} 21212873-6655063$	32.0 ± 2.0	$30.2 \pm 1.3^{\mathrm{f}}$	99.99	99.99	β PMG
$\mathrm{J} 21521039+0537356$	29.0 ± 1.7	$30.5 \pm 5.3^{\mathrm{f}}$	99.99^{b}	99.99^{b}	ABDMG
$\mathrm{J} 23205766-0147373$	29.6 ± 1.5	41.0 ± 2.7	96.16^{b}	99.99^{b}	ARG
$\mathrm{J} 23301341-2023271$	13.5 ± 0.6	$16.2 \pm 0.9^{\mathrm{f}}$	75.69^{b}	99.21^{b}	COL

Signs of youth confirmation

- Chromospheric and coronal activity (H α, X-ray, UV)
- Stellar rotation
- Surface gravity (H-band, NaI, KI)
- Lithium abundance /LDB

Malo et al. (accepted)

Full membership \& age confirmation with Gaia?

- Most complete census (last 10 yrs): Riedel et al. (2014), Rodriguez et al. (2014), Malo et al. (2013), Gagné et al. (2014), Kraus et al. (2014)
- Gaia + Gaia-ESO survey:
- $\alpha+\delta+\mu_{\alpha}+\mu_{\delta}+\mathbf{R V}+$ parallax $=\mathbf{U}, \mathbf{V}, \mathbf{W}+\sigma_{u v W}$
- $\alpha+\delta+$ parallax $=X, Y, Z+\sigma_{X Y Z}$
- Youth indicators
- Two things are missing for the age confirmation:
- Interferometric radii measurements -> $\mathbf{L}_{\text {bol }}$
- Magnetic field measurements

Radii diagram

Hertzsprung-Russell diagram

- Dartmouth Magnetic evolutionary models (Feiden et al. 2013)

Age determination, example for $\boldsymbol{\beta P M G}$

Next steps

- Currently the main limitation of the BANYAN tool is the number of well known associations (good parallaxes).
- Waiting for parallax to model the other associations farther than 100 pc .

- Magnetic field measurements
- Zeeman splitting effects
- SPIRou/CFHT (first light 2017)
- spectro-polarimeter, $\mathrm{R}=70,000$; $\lambda=0.98-2.35$ microns
- GRACES: 270 m fiber between GeminiNorth and ESPaDOnS-CFHT ->RV

For more information, see our poster

