

Astrometric planet search around southern ultracool dwarfs

Johannes Sahlmann ESA Research Fellow

P.F. Lazorenko (MAO Kiev) E.L. Martín (CAB Madrid) D. Ségransan (Obs Geneva) M. Mayor (Obs Geneva) D. Queloz (Obs Geneva) S. Udry (Obs Geneva)

Turin - 24 March 2014

EXOPLANETS ARE ABUNDANT AND DIVERSE

HARPS-S: 75 ± 7 % of Sun-like stars host a planet (Mayor et al. 2011)

esa

Kepler: ~3800 planet candidates

Microlensing statistics

Are the conditions for planet formation met around ultracool dwarfs?

Visual binary

 $\Delta \alpha^{*}$ (arcsec)

Exoplanet host star

- 5 standard astrometric parameters:
- 2 positions + parallax + 2 proper motions

7 orbit parameters:

Period, semi-major axis, eccentricity, inclination + angles (P, a, e, i, Ω, ω, Φ_0)

SEARCH FOR PLANETS AROUND ULTRA-COOL DWARFS

Johannes Sahlmann

Astrometric planet search around UCD

ASTROMETRY WITH IMAGES

Ground: Narrow-field atmospheric limit with D ~10 m is 10-100 µas (seeing limited or AO corrected, reasonable integration times)

see Lindegren 1978, Lazorenko & Lazorenko 2004, Lazorenko et al. 2009, Cameron et al. 2009, Fritz et al. 2010

FORS2 camera at the Very Large Telescope demonstrated an astrometric performance of 50-100 µas (Lazorenko, Sahlmann, et al. 2011)

Detection limit: 3 x Neptune-mass planet in 700 day orbit around 0.08 M_{Sun} primary.

→ NEW DISCOVERY SPACE

Started monitoring 20 nearby late-M and early-L dwarfs close to the Galactic plane in 2010.

Johannes Sahlmann

Johannes Sahlmann

Astrometric planet search around UCD

2S2

A GALLERY OF ULTRACOOL DWARF MOTIONS

Johannes Sahlmann

Astrometric planet search around UCD

100 MICRO-ARCSEC ASTROMETRY IS POSSIBLE FROM THE GROUND

Sahlmann, Lazorenko et al., 2014, A&A in press Lazorenko, Sahlmann et al., 2014, A&A in press

Estimating the parallax correction

- I.Absolute references (galaxies)
- 2. Photometric distances to ref. stars
- 3. Galaxy model (Besançon) statistics

3

40

Nr	ID	$\Delta \varpi_{galax}$	σ_{galax}	N _{stars}	ϖ_{abs}		Ι	I	1	I			I		
		(mas)	(mas)		(mas)	17.5	-			_ • •	11				
1	DE0615-01	-0.445	0.877	194	45.700 ± 0.112	-			⁸ T	5	12				
2	DE0630-18	-0.428	0.493	141	51.719 ± 0.099^{a}	170		18^{9}							
3	DE0644-28	-0.332	0.714	135	25.094 ± 0.094	υ 17.0	-	1/							
4	DE0652-25	-0.526	0.390	106	62.023 ± 0.070	pr			$5 \bullet$						
5	DE0716-06	-0.389	1.561	373	40.918 ± 0.144	<u>16 5</u>		14 13	' 20	•					
6	DE0751-25	-0.327	0.429	342	56.304 ± 0.085	с то 2	-	6		16					
7	DE0805-31	-0.336	0.625	376	42.428 ± 0.083	Ja									
8	DE0812-24	-0.323	0.919	364	47.282 ± 0.094										
9^b	DE0823-49	-0.062	0.643	283	48.16 ± 0.19	0.01 F	10	4	_	7					
10	DE0828-13	-0.578	0.855	123	85.838 ± 0.148	C O			ζŢ						
11	DE1048-52	-0.275	0.674	565	36.212 ± 0.077	<u></u> 15.5	_		2						
12	DE1157-48	-0.245	0.679	323	34.633 ± 0.082	d 1919			1	.9					
13	DE1159-52	-0.332	0.495	237	105.538 ± 0.120	A A A									
14	DE1253-57	-0.192	0.425	478	60.064 ± 0.054	15.0	-								
15	DE1520-44	-0.159	0.660	414	53.995 ± 0.109										
16	DE1705-54	-0.038	1.188	1184	37.549 ± 0.087		13								
17	DE1733-16	-0.164	0.791	1530	55.272 ± 0.073	14.5		1		I					
18	DE1745-16	-0.030	0.833	1511	50.871 ± 0.096	· · ·	10	15	20	25	<u></u>	0	35		
19	DE1756-45	-0.194	0.411	631	43.577 ± 0.064		IU	т.) — ·	20	<u>ک</u> ے	J				
20	DE1756-48	-0.057	0.560	783	47.039 ± 0.058			i rigonometric distance (pc)							

Johannes Sahlmann

Spectro-Photometry + distance + age estimate + BT-Settl models

Johannes Sahlmann

Astrometric planet search around UCD

GIANT PLANETS ARE RARE AROUND ULTRACOOL DWARFS (AT ALL SEPARATIONS)

less than 9 % of M8-L2 dwarfs have a giant planet >5M_{Jup} within 0.1-0.8 AU

SEARCHING FOR PLANET SIGNATURES

esa

DETECTION OF THE ORBIT CAUSED BY A LOW-MASS COMPANION

 $P = 246.4 \pm 1.4 \text{ days}$ e = 0.35 ± 0.07 a₁ = 4.61 ± 0.14 mas Parallax = 48.16 ± 0.19 mas

 $M_1 = 78 \pm 8 M_{Jup}$ (L1.5 dwarf)

 $M_2 = 28.5 \pm 1.9 M_{Jup}$

Sahlmann et al., 2013b, A&A 556

OPENING UP A NEW DETECTION SPACE

Very low-mass binaries

THE GAIA CONTEXT

Johannes Sahlmann

Astrometric planet search around UCD

FORS2/VLT and Gaia reach comparable precisions on faint single objects located in dense fields (factor of ~65 in light-collecting area)

esa

ULTRACOOL DWARF SCIENCE WITH GAIA

Accurate distances for ~ 1000 very-low mass stars and brown dwarfs

 \rightarrow colour magnitude diagrams

→ better understanding of physics at the stellar/ substellar boundary

(Smart et al., 2008, IAUS 248; Sarro et al., 2013, A&A, 550)

Statistics of very low-mass binaries: insights into the question whether they form like stellar binaries

Planets around ultracool dwarfs: identify candidates for ground-based follow-up

CONCLUSIONS

Ground-based astrometry can deliver long-term accuracies at 100 micro-arcsec level over several years.

Super-Jupiters are rare around M/L-transition dwarfs at all separations.

We discovered 2 new tight UCD binaries and several planet candidates.

ESA's Gaia mission will deliver high-precision astrometry for hundreds of UCD, yielding accurate distances, astrometric binary orbits, and UCD planet candidates.

arXiv:1403.1275

arXiv:1403.4619

Astrometric planet search around southern ultracool dwarfs

I. First results, including parallaxes of 20 M8–L2 dwarfs*

J. Sahlmann^{1,2}, P. F. Lazorenko³, D. Ségransan², E. L. Martín⁴, M. Mayor², D. Queloz^{2,5}, and S. Udry²

¹ European Space Agency, European Space Astronomy Centre, P.O. Box 78, Villanueva de la Cañada, 28691 Madrid, Spain e-mail: johannes.sahlmann@sciops.esa.int

Received 6 December 2013 / Accepted 10 March 2014

Astrometric planet search around southern ultracool dwarfs

- II. Astrometric reduction methods and a deep astrometric catalogue*
- P. F. Lazorenko¹, J. Sahlmann^{2, 3}, D. Ségransan³, E. L. Martín⁴, M. Mayor³, D. Queloz^{3, 5}, and S. Udry³

- ² European Space Agency, European Space Astronomy Centre, P.O. Box 78, Villanueva de la Cañada, 28691 Madrid, Spain
- ³ Observatoire de Genève, Université de Genève, 51 Chemin Des Maillettes, 1290 Versoix, Switzerland
- ⁴ INTA-CSIC Centro de Astrobiología, 28850 Torrejón de Ardoz, Madrid, Spain
 ⁵ University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK

Received 18 December 2013 / Accepted 14 March 2014

² Observatoire de Genève, Université de Genève, 51 Chemin Des Maillettes, 1290 Versoix, Switzerland

³ Main Astronomical Observatory, National Academy of Sciences of the Ukraine, Zabolotnogo 27, 03680 Kyiv, Ukraine

⁴ INTA-CSIC Centro de Astrobiología, 28850 Torrejón de Ardoz, Madrid, Spain

⁵ University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK

¹ Main Astronomical Observatory, National Academy of Sciences of the Ukraine, Zabolotnogo 27, 03680 Kyiv, Ukraine e-mail: laz@mao.kiev.ua