Astrometric planet search around southern ultracool dwarfs

Johannes Sahlmann
ESA Research Fellow

P.F. Lazorenko (MAO Kiev) M. Mayor (Obs Geneva)
E.L. Martín (CAB Madrid) D. Queloz (Obs Geneva)
D. Ségransan (Obs Geneva) S. Udry (Obs Geneva)

EXOPLANETS AREABUNDANT AND DIVERSE

HARPS-S:
 $75 \pm 7 \%$ of Sun-like stars host a planet (Mayor et al. 20II)

Kepler:
~3800 planet candidates

Microlensing statistics

WE SEARCH FOR PLANETS AROUND OBJECTS AT THE STELLAR/SUBSTELLAR BOUNDARY

Are the conditions for planet formation met around ultracool dwarfs?

ASTROMETRY OPENS UP A UNIQUE DISCOVERY SPACE

Astrometry:

- detectability does not depend on orbit orientation
- not limited to slow rotators
- optimal for intermediate period planets
- distance dependent

RELATIVE ORBIT > BARYCENTRIC ORBIT

Visual binary

Exoplanet host star

I2 PARAMETERS DESCRIBE AN ASTROMETRIC ORBIT

5 standard astrometric parameters:
2 positions + parallax +
2 proper motions

7 orbit parameters:
Period, semi-major axis, eccentricity, inclination + angles ($\mathrm{P}, \mathrm{a}, \mathrm{e}, \mathrm{i}, \quad \Omega, \omega, \Phi_{0}$)

SEARCH FOR PLANETS AROUND ULTRA-COOL DWARFS

ASTROMETRY WITH IMAGES

Frame I

Frame N

Extract relative position of the target in every frame Map the field of reference stars from frame to frame

Obtain time series of relative astrometry

Ground: Narrow-field atmospheric limit with D ~10 m is $\mathbf{1 0 - 1 0 0} \boldsymbol{\mu}$ as

 (seeing limited or AO corrected, reasonable integration times)see Lindegren 1978, Lazorenko \& Lazorenko 2004, Lazorenko et al. 2009, Cameron et al. 2009, Fritz et al. 20 IO

FORS2 camera at the Very Large Telescope demonstrated an astrometric performance of 50-100 $\mu \mathrm{as}$ (Lazorenko, Sahlmann, et al. 201I)

Detection limit: $\mathbf{3 \times}$ Neptune-mass planet in $\mathbf{7 0 0}$ day orbit around $\mathbf{0 . 0 8}$ Msun primary.
\rightarrow NEW DISCOVERY SPACE

Started monitoring 20 nearby late-M and early-L dwarfs close to the Galactic plane in 2010.

MEASURING PARALLAX AND PROPER MOTION

average epoch uncertainty: $\mathbf{1 2 0}$ uas residual dispersion:

140 as
Relative parameters:
parallax $60.87+/-0.06 \mathrm{mas}$
proper motion RA -234.31 +/- 0.09 mas $/ \mathrm{yr}$ proper motion DE $85.48+/-0.07 \mathrm{mas} / \mathrm{yr}$

A GALLERY OF ULTRACOOL DWARF MOTIONS

I 00 MICRO-ARCSEC ASTROMETRY IS POSSIBLE FROMTHE GROUND

Sahlmann, Lazorenko et al., 2014, A\&A in press
Lazorenko, Sahlmann et al., 2014,A\&A in press

Estimating the parallax correction

I.Absolute references (galaxies)

2. Photometric distances to ref. stars
3. Galaxy model (Besançon) - statistics

Trigonometric parallaxes of $20 \mathrm{M} / \mathrm{L}$ dwarfs at 0.1 mas

Nr	ID	$\Delta \sigma_{\text {galax }}$ (mas)	$\sigma_{\text {galax }}$ (mas)	$N_{\text {stars }}$	$\sigma_{\text {abs }}$ (mas)
1	DE0615-01	-0.445	0.877	194	45.700 ± 0.112
2	DE0630-18	-0.428	0.493	141	51.719 ± 0.099^{a}
3	DE0644-28	-0.332	0.714	135	25.094 ± 0.094
4	DE0652-25	-0.526	0.390	106	62.023 ± 0.070
5	DE0716-06	-0.389	1.561	373	40.918 ± 0.144
6	DE0751-25	-0.327	0.429	342	56.304 ± 0.085
7	DE0805-31	-0.336	0.625	376	42.428 ± 0.083
8	DE0812-24	-0.323	0.919	364	47.282 ± 0.094
9^{b}	DE0823-49	-0.062	0.643	283	48.16 ± 0.19
10	DE0828-13	-0.578	0.855	123	85.838 ± 0.148
11	DE1048-52	-0.275	0.674	565	36.212 ± 0.077
12	DE1157-48	-0.245	0.679	323	34.633 ± 0.082
13	DE1159-52	-0.332	0.495	237	105.538 ± 0.120
14	DE1253-57	-0.192	0.425	478	60.064 ± 0.054
15	DE1520-44	-0.159	0.660	414	53.995 ± 0.109
16	DE1705-54	-0.038	1.188	1184	37.549 ± 0.087
17	DE1733-16	-0.164	0.791	1530	55.272 ± 0.073
18	DE1745-16	-0.030	0.833	1511	50.871 ± 0.096
19	DE1756-45	-0.194	0.411	631	43.577 ± 0.064
20	DE1756-48	-0.057	0.560	783	47.039 ± 0.058

Spectro-Photometry + distance + age estimate + BT-Settl models

less than 9% of M8-L2 dwarfs have a giant planet $>5 \mathrm{M}_{\text {Jup }}$ within 0.I-0.8 AU

SEARCHING FOR PLANET SIGNATURES

We detected some planet candidates \rightarrow need for more epochs and longer timespan

Genetic algorithm

DETECTION OFTHE ORBIT CAUSED BY A LOWMASS COMPANION

OPENING UP A NEW DETECTION SPACE

Very low-mass binaries
(vlmbinaries.org + Dupuy compilation + literature)

Precision astrometry of VLM binaries:
I.A new window to small massratio systems.
2. Companion mass function down to planetary masses
3. Complete orbit characterisation + high-precision parallax
4. Multiplicity: $10^{+11}{ }_{-3} \%$ of M8-L2 dwarfs are tight binaries

THE GAIA CONTEXT

FAINT STAR PRECISION WITH FORS2 AND GAIA

FORS2/VLT and Gaia reach comparable precisions on faint single objects located in dense fields (factor of ~ 65 in light-collecting area)

ULTRACOOL DWARF SCIENCEWITH GAIA

Statistics of very low-mass binaries: insights into the question whether they form like stellar binaries

Planets around ultracool dwarfs: identify candidates for ground-based follow-up

Accurate distances for ~ 1000 very-low mass stars and brown dwarfs
\rightarrow colour magnitude diagrams
\rightarrow better understanding of physics at the stellar/ substellar boundary
(Smart et al., 2008, IAUS 248; Sarro et al., 20I3, A\&A, 550)

Ground-based astrometry can deliver long-term accuracies at 100 micro-arcsec level over several years.

Super-Jupiters are rare around M/L-transition dwarfs at all separations.
We discovered 2 new tight UCD binaries and several planet candidates.
ESA's Gaia mission will deliver high-precision astrometry for hundreds of UCD, yielding accurate distances, astrometric binary orbits, and UCD planet candidates.

$$
\text { arXiv:|403.| } 275
$$

Astrometric planet search around southern ultracool dwarfs
I. First results, including parallaxes of $\mathbf{2 0}$ M8-L2 dwarfs ${ }^{\star}$

$$
\text { J. Sahlmann }{ }^{1,2} \text {, P. F. Lazorenko }{ }^{3} \text {, D. Ségransan² }{ }^{2} \text {, E. L. Martín }{ }^{4} \text {, M. Mayor }{ }^{2} \text {, D. Queloz }{ }^{2,5} \text {, and S. Udry }{ }^{2}
$$

European Space Agency, European Space Astronomy Centre, P.O. Box 78, Villanueva de la Cañada, 28691 Madrid, Spain e-mail: johannes.sahlmann@sciops.esa.int
Observatoire de Genève, Université de Genève, 51 Chemin Des Maillettes, 1290 Versoix, Switzerland
Main Astronomical Observatory, National Academy of Sciences of the Ukraine, Zabolotnogo 27, 03680 Kyiv, Ukraine
INTA-CSIC Centro de Astrobiología, 28850 Torrejón de Ardoz, Madrid, Spain
${ }^{5}$ University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 OHE, UK
Received 6 December 2013 / Accepted 10 March 2014
arXiv:1403.46I9

Astrometric planet search around southern ultracool dwarfs
II. Astrometric reduction methods and a deep astrometric catalogue^ P. F. Lazorenko ${ }^{1}$, J. Sahlmann ${ }^{2,3}$, D. Ségransan ${ }^{3}$, E. L. Martín ${ }^{4}$, M. Mayor ${ }^{3}$, D. Queloz ${ }^{3,5}$, and S. Udry ${ }^{3}$

Main Astronomical Observatory, National Academy of Sciences of the Ukraine, Zabolotnogo 27, 03680 Kyiv, Ukraine e-mail: laz@mao.kiev.ua
European Space Agency, European Space Astronomy Centre, P.O. Box 78, Villanueva de la Cañada, 28691 Madrid, Spain Observatoire de Genève, Université de Genève, 51 Chemin Des Maillettes, 1290 Versoix, Switzerland
4 INTA-CSIC Centro de Astrobiología, 28850 Torrejón de Ardoz, Madrid, Spain
5 University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 OHE, UK
Received 18 December 2013 / Accepted 14 March 2014

