New constraints on the formation and settling of dust in the atmospheres of young M and L dwarfs

Elena Manjavacas

Max Planck Institut für Astronomie

25th March 2014

esa

gaia

Results: Manjavacas et al. 2014

Collaborators:

M. Bonnefoy, J. E. Schlieder, F. Allard, B. Goldman, P. Rojo, T. Henning,

G. Chauvin, N. Lodieu, D. Homeier

イロト イポト イヨト イヨト

Brown dwarfs (BDs) are substellar objects unable to burn H Formation and evolution of brown dwarfs

Burrows et al. 2001

• • 3 • •

- VLT/ISAAC spectra of 5 young BDs candidates + 2 BDs members of young clusters and associations
- NIR spectra in J, H and K (Resolution = 1500 1700)
- Targets:
 - Optical spectral types: M9.5 L3
 - Previously studied in the optical

- NIR spectral typing of our targets
- Confirm their low surface gravity
- Test BT-Settl 2010 & 2013 in the M-L transition

• • = •

Introduction

Age-sequence M9.5 SpT objects

→ 同→ → ミト

< ≣⇒

Empirical Analysis

- We compare spectral features of our objects in the NIR to brown dwarfs found in the literature.
- χ^2 statistic to decide the best fit + visual inspection

Gravity sensitive K I lines at: 1.169 μm , 1.177 μm , 1.243 μm and 1.253 $\mu m.$

 $\gamma = {\rm very}$ low gravity features; $\beta = {\rm intermediate}$ gravity features

Gravity sensitive K I lines at: 1.169 μm , 1.177 μm , 1.243 μm and 1.253 $\mu m.$

 $\gamma = {\rm very}$ low gravity features; $\beta = {\rm intermediate}$ gravity features

Elena Manjavacas New constraint

Gravity sensitive K I lines at: 1.169 μm , 1.177 μm , 1.243 μm and 1.253 $\mu m.$

 $\gamma = {\rm very}$ low gravity features; $\beta = {\rm intermediate}$ gravity features

Gravity sensitive K I lines at: 1.169 μ m, 1.177 μ m, 1.243 μ m and 1.253 μm.

 $\gamma =$ very low gravity features; $\beta =$ intermediate gravity features

Elena Manjavacas

Gravity sensitive K I lines at: 1.169 μm , 1.177 μm , 1.243 μm and 1.253 $\mu m.$

 γ = very low gravity features; β = intermediate gravity features

Elena Manjavacas New constraints on

Gravity sensitive K I lines at: 1.169 μm , 1.177 μm , 1.243 μm and 1.253 $\mu m.$

 γ = very low gravity features; β = intermediate gravity features

Elena Manjavacas New constra

 H_2O , H_2OD , $H_2O - 1$, $H_2O - 2$ (Allers et al. 2013)

 H_2O , H_2OD , $H_2O - 1$, $H_2O - 2$ (Allers et al. 2013)

 H_2O , H_2OD , $H_2O - 1$, $H_2O - 2$ (Allers et al. 2013)

Table : Estimation of NIR spectral types

Name	Opt SpT	Emp. SpT	SpT final
DE J1245	M9.5	M9	M9.5±1.0
EROS J0032	$L0\gamma$	L1	$L0.5 {\pm} 0.5$
2M J2213	$L0\gamma$	L0	L2.0±1.5
Cha J1305	LO	L1	$L3.5 {\pm} 1.5$
2M J2322	$L2\gamma$	L2	L2.0±1.0
2M J2126	$L3\gamma$	L3	L3.0±1.5
2M J2208	$L3\gamma$	L1	L3.0±2.0

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

3

- We compare our NIR spectra with preditions of BT-Settl 2010 & 2013
- Some differences:
 - Different reference for solar abundances: 2010: Asplund et al. (2009); 2013: Caffau et al. (2011)
 - BT-Settl 2013: atmospheres enriched with C, O, Fe, K compared with 2010 (FeH, CO, H₂O, K)
 - Improved opacities
- Grids:

1000 K
 T_{eff} \leq 3000 K; 3.0
 $\log g{\leq}5.5;$ [M/H]=0 For 2013 also [M/H]+0.5

• We derive T_{eff} , log g & [M/H]

Comparison with synthetic NIR spectra

BT-Settl 2010 BT-Settl 2013

Elena Manjavacas

- We build SED of the objects using published photometry: 2MASS & WISE
- We look for the best fit in of BT-Settl 2010 & 2013.
- We exclude Cha 1305 as it has NIR excess (disk) (Allers et al. 2006b)
- We do not include optical photometry because the models are really inaccurate (Bonnefoy et al. 2013b).
- We use the parameters derived from the SED fit to compare synthetic spectra & observational spectra

(四) (日) (日)

Comparison with SED

SED fitting BT-Settl 2010 BT-Settl 2013

Supersolar metalicity models fit better -> suggest a problem with the amount of dust $% \left({{{\rm{s}}_{\rm{s}}}} \right)$

- Missing opacities?
- Amount of dust in the atmosphere: condensation rate?
- Dregde-up effect: convection

Table : Physical properties of the objects with known distance.

Object	Age (Myr)*	Membership	BANYAN I**	BANYAN II***
DENIS 1245	10^{+10}_{-7}	TW Hydrae	95%	93.3%
Cha1305	4 ± 2	Chamaleon II		
EROS J0032	30^{+20}_{-10} ?	Tuc/Hor	92%	
EROS J0032	120 ± 20 ?	AB-Dor	8%	
EROS J0032	21^{+4}_{-13}	β Pic	1%	91.8%

* Evolutionary models from Chabrier et al. (2000)
** Malo et al. 2013
*** Gagné et al. 2014

(1日) (1日) (1日)

- BT-Settl 2013 models underpredict dust on young brown dwarfs atmospheres
- SED is well reproduced by BT-Settl 2010 & 2013
- We confirm the youth of our targets and we estimate their spectral types in the NIR
- The spectra help to confirm the membership of photometricaly-selected candidates in star-forming regions
- The spectra help to understand directly image exoplanets

(四) (日) (日)

How Gaia would improve my results??

- Accurate distances will give absolute luminosities to constrain ages of these objects using evolutionary models
- Accurate distances will allow to study the kinematics of young brown dwarfs and they potential membership to moving groups