Atmosphere models across the Substellar Boundary

Derek Homeier¹

European Research Council Established by the European Commission France Allard¹ Bernd Freytag³ Isabelle Baraffe^{2,1} Gilles Chabrier^{1,2}

¹CRAL/École Normale Supérieure de Lyon ²University of Exeter ³ Uppsala Universitet Atmosphere models from supergiants to brown dwarfs — and beyond Low Mass Star

Brown Dwarf

Jupiter

🔮 Earth

NASA

Atmosphere models from supergiants to brown dwarfs — and beyond

(Sub-) stellar atmosphere modelling

- independent Variables
 (minimal):
- effective temperature T_{eff}
- surface gravity $g(r) = GM/r^2$
- mass *M* or radius *R* or luminosity $L = 4 \pi R^2 \sigma T_{eff}^4$
- composition ("metallicity")
- convection → (micro-) turbulence & mixing
- rotation
- chemical peculiarities
- magnetic fields etc....

PHOENIX workflow (P. Hauschildt)

→ adding more dimensions to the modelling problem

(Ultra)cool Atmospheres — Molecular Bands

Importance of molecular bands dependent on

- Line strengths
 gf, Abundances
- Line shapes
- Line numbers
- Line distribution

Bands with complex spectra (polyatomic molecules) produce strongest blanketing effects.

Molecular line blanketing: Methane

- 30 Mio. lines computed with the STDS program (Université de Bourgogne) — 2013 update: 80 Mio.
- Vibrational and rotational states up to ~ 8000 cm⁻¹
- Completeness: ~50% (mid-IR) 10% (H-band) 0% (Y/J)

Molecular Bands — Methane

ExoMol

Fig. 2. Polyad energy-level structure for ¹²CH₄. Boudon et al. 2006

Molecular Bands — Methane

10¹⁰ lines

ExoMol

Yurchenko et al. 2014

Fig. 2. Polyad energy-level structure for ¹²CH₄. Boudon et al. 2006

Molecular Line Profiles - Data

- Molecular line data for stellar atmosphere calculations:
 - Extensive data available from spectroscopy line lists (HITRAN and others)
 - Often damping widths and shifts included, sometimes temperature dependence
- Challenges:
 - Most data for Earth and outer planets' atmosphere studies
 Ine lists complete only at 296 K
 damping constants at low temperatures
 - Most experimental measurements for N₂ and O₂ as perturbers
 - Generalisation for large theoretical line lists required

Molecular Line Profiles - Data

- Molecular line data for stellar atmosphere calculations:
 - Extensive data available from spectroscopy line lists (HITRAN and others)
 - Often damping widths and shifts included, sometimes temperature dependence

st22g35n07: Surface Intensity(2I), time(1.0)=350503.0 s

CO⁵BOLD 3D global **RHD** Simulation of scaled-down 2200 K L dwarf atmosphere with Forsterite (Mg_2SiO_4) cloud model B. Freytag et al., in prep.

st22g35n07: dust: rho_dust/rho_gas, time(1.0)=350503.0 s

CO⁵BOLD 3D global **RHD** Simulation of scaled-down 2200 K L dwarf atmosphere with Forsterite (Mg_2SiO_4) cloud model B. Freytag et al., in prep. Entropy traces sub-photospheric circulation

Derek Homeier Atmosphere models across the substellar boundary Gaia and the Unseen - Torino, 25/03/14 2014

Baraffe et al. in prep.

Atmosphere models — M dwarfs

Cloud opacity impacts spectra below T_{eff} ~2600K

Rajpurohit et al. (2012)

Y dwarfs — yet more clouds

Morley et al. 2012

Y dwarfs — yet more clouds

Water ice clouds appearing between 300 and 400 K

Clouds in Brown Dwarfs and Planets

Clouds in Brown Dwarfs and Planets

Clouds from L to Y dwarfs

Clouds from L to Y dwarfs

• Water ice clouds appearing between 300 and 400 K Derek Homeier Atmosphere models across the substellar boundary Gaia and the Unseen - Torino, 25/03/14 2014

Conclusions

- Gaia will help to test our understanding of the M/L-transition
- Identification and study of different BD populations down to L dwarfs
- Hopefully many binary systems including T/Y dwarfs as benchmarks for metallicity, age...