Parallaxes of Ultra Cool Brown Dwarfs Calibrators

R. Teixeira¹, C. Ducourant², A. Krone-Martins³, S. Scarano⁴, A. Moitinho³, Ph. Galli¹ I : IAG Sao Paulo, 2 : LAB Bordeaux, 3 : SIM, Lisboa, 4 : Universidade Federal de Sergipe

Outlines

Introduction : ground-based parallaxes why?

- Our project at the Soar Telescope
- Image treatment : denoising

Detectability of ultra cool BD by Gaia

Fig. 3. Maximum distances at which an ultra-cool dwarf can be detected by *Gaia* at the limiting magnitud G = 20 as a function of its absolute magnitude in the *I* band. These have been derived from BT-Settl models (filled circles) and the continuous lines represent the interpolation used in deriving the expected counts per spectral type bin in Table 1. The black continuous line corresponds to $\log(g) = 5.0$ and the blue line to $\log(g) = 3.5$. The top axis shows the effective temperature measured in Kelvin for a $\log(g) = 5.0$ object with the absolute *I* magnitudes shown in the *x* axis, according to the BT-Settl models. The $T_{\text{eff}} - M_{\text{I}}$ mapping is only bi-valued below 600 K.

L. M. Sarro et al., 2013, A&A 550, A44

Few UCBD observed by Gaia
Gaia catalog : 2020
Need to calibrate atmospheric models in the BD/UCBD regime

Detection of ultra cool BD from ground

WISE in activity since 2009 (entire sky, 4 mid-infrared wavelengths).
 About 200 BD SType > T6

	RA [h:m:s]	DEC [d:m:s]	ST	D(pc)	Parallax	Discovery
WISE	9 43 5,98	+36 7 23,5	T9.5	6,6-12,1	Cushing et al. (2014)	Cushing et al. (2011)
WISE	20 0 50,19	+36 29 50,1	T8	6,4-8,0	Cushing et al. (2014)	Cushing et al. (2011)
WISE	22 9 5,73	+27 11 43,9	Y0	5,2-11,7	Cushing et al. (2014)	Cushing et al. (2011)
WISEP	4 10 22,71	+15 2 48,5	Y0	4,2	Marsh et al. (2013)	Cushing et al. (2011)
WISEPC	14 5 18,40	+55 34 21,5	Y0	3,4	Marsh et al. (2013)	Cushing et al. (2011)
WISE	17 38 35,53	+27 32 59,0	Y0	6,0	Marsh et al. (2013)	Cushing et al. (2011)
WISEPC	20 56 28,90	+14 59 53,3	Y0	7,5	Marsh et al. (2013)	Cushing et al. (2011)
WISEPA	2 54 9,45	+02 23 59,1	T8	4,9	Marsh et al. (2013)	Scholz et al. (2011)
WISEPC	15 6 49,97	+70 27 36,0	T6	3,4	Marsh et al. (2013)	Kirkpatrick et al.(2011)
WISEPA	17 41 24,26	+25 53 19,5	Т9	5,8	Marsh et al. (2013)	Kirkpatrick et al.(2011)

• • •

Distance needed now

to characterize these objects

to constrain the atmospheric models

How to obtain distances ?

Spectroscopic distance

Relies on a calibrated
 Abs. Mag & Spec.Type
 relationship
 Interstellar extinction

Photometric distance

Relies on a calibrated Color & apparent Mag relationship

Trigonometric distance

 Relies on no astrophysical assumption
 Time demanding

Table 7 Distance Estimates					
Object	SpType	d _{spec} (pc) ^a	d _л (рс) ^ь	d _{phot} (pc) ^c	
UGPS 0722-05	_Т9	11.1 (10.4-11.1)	3.6-4.7		>
WISEPC J0148-7202	T9.5	14.7 (13.1-14.7)		12.1	
WISEP J0410 + 1502	YO	11.8 (6.3-16.9)		9.0	
WISEPC J1405 + 5534	Y0 (pec?)	3.8		8.6	
WISEP J1541-2250	YO	8.1 (8.1-8.9)	2.2-4.1	8.2	
WISEP J1738+2732	Y0	3.4 (3.4-7.3)		10.5	
WISEP J1828+2650	>Y0			<9.4	
WISEPC J2056+1459	YO	3.0 (2.4-6.4)		7.7	

Notes.

^a Spectroscopic distance estimates derived as described in Section 4.2.1. The distance corresponding to the best-fitting model is given and the range of distances corresponding to models that are consistent with the data are given in parentheses.

^b Parallactic distance for UGPS 0722-05 and WISEP J1541-2250 from Lucas et al. (2010) and Kirkpatrick et al. (2011), respectively.

^e Photometric distance estimates from Kirkpatrick et al. (2011).

Cushing et al. 2011

Trigonometric parallaxes

Constraints :

→Project over a minimum of 2.5 yr time-base → A unique instrument → Data mining remains difficult Is it worth? \blacksquare For locating a 5 pc object : No. \blacksquare For statistics : No \rightarrow To calibrate the models : Yes ➡To characterize objects : Yes, even for close objects

Our parallax program

Distances at I-5%

ld	RA	DE	St	J	Note
WISE J0254+0223	02:54:09.00	+02:23:59.00	т8-9	15.8	Very close
WISE J1741+2533	17:41:24.00	+25:53:20.00	Т9-10	16.5	Very close
UGPS J0722-0540	07:22:27.00	-05:40:30.00	Т9	16.5	
WISE 1541-2250	15:41:00.00	-22:49:55.00	¥0?	21.2	350K?
2M 0041353-562112	00:41:35.39	-56:21:12.77	M7-9	14.7	BD system
Omega centauri	13:26:47,00	-47:28:46,00	Calibra	tion of S	Spartan

Difficult to conclude on the age : either error on distance underestimated or models imprecise.

Need for accurate distance

UGPS J0722-0540 T9 Lucas et al., 2010 (UKIRT data)

Pi = 246 +/- 33 mas T_{eff} = 520 +/- 40 K

WISE 1541-2250 Y0 Cushing et al. 2011 (WISE data)

 $T_{eff} = 350 + / - ... K$

Important calibrators Need of a precise distance

Table 7 Distance Estimates					
Object	SpType	d _{spec} (pc) ^a	d _π (pc) ^b	d _{phot} (pc) ^c	
UGPS 0722-05	Т9	11.1 (10.4-11.1)	3.6-4.7		
WISEPC J0148-7202	T9.5	14.7 (13.1-14.7)		12.1	
WISEP J0410 + 1502	YO	11.8 (6.3-16.9)		9.0	
WISEPC J1405 + 5534	Y0 (pec?)	3.8		8.6	
WISEP J1541-2250	YO	8.1 (8.1-8.9)	2.2-4.1	8.2	
WISEP J1738+2732	YO	3.4 (3.4-7.3)		10.5	
WISEP J1828+2650	>Y0			<9.4	
WISEPC J2056+1459	Y 0	3.0 (2.4-6.4)		7.7	

Notes.

^a Spectroscopic distance estimates derived as described in Section 4.2.1. The distance corresponding to the best-fitting model is given and the range of distances corresponding to models that are consistent with the data are given in parentheses.

^b Parallactic distance for UGPS 0722-05 and WISEP J1541-2250 from Lucas et al. (2010) and Kirkpatrick et al. (2011), respectively.

^c Photometric distance estimates from Kirkpatrick et al. (2011).

2MJ0041353-562112 M7.5 BD system

Reiners et al. 2009

Signs of accretion : disk, age < 10 Myr
Kinematics : member of Tuc-Hor association (10-40 Myr)

Need of accurate distance to derive individual masses !

The Soar telescope

The telescope

The Southern Astrophysical Research
4.1 m telescope (SOAR)
Cerro Pachon (Chile) 2700m

The Spartan camera

- ➡ IR camera with high spatial resolution.
- → 4 Hawaii-II" 2048 x 2048 pixel
 - HgCdTe detectors

66 mas/pixel
FOV of 5.04' x 5.04'

M30 - calibration field

Observations

- 2.5 years project
- J filter, jittered observations
- 8 epochs of observation / year
- 9 hours / epochs
- 6-10 images of each target each year
- Strict observing conditions (HA<1.5h)
- Astrometric calibration of Spartan with omega centauri observations

A problem with the Spartan camera

- Motor of wheel filter failed
 Condensation on the dewar window
 3 months delay
- I chip dead

Data treatment

Repeatability < 20 mas

Image Treatment : Wavelet and variance stabilizing pre-processing Zhang et al., 2008, IEEE Transactions on image processing, vol 17, 7

Improvement of S/N

131

174

Denoising : improved repeatability

- 3 consecutive Spartan images of the same field
 Cross-id
- •Mean and dispersion of (x,y) positions

Denoising : accuracy of positions ?

Image simulation SkyMaker (E. Bertin),

- Ideal positions+mag objects
- Simulated noised image

Denoising
➡ Denoised image

Image measurement

Daophot (...)/Sextractor (E. Bertin)/...
 Measured positions/mag objects for

 Noised image
 Denoised image

 Distance to Ideal positions

Denoising : 20-30% more faint detections

Denoising : accuracy ?

$$dist = \sqrt{(X_{ideal} - X)^2 + (Y_{ideal}) - Y)^2}$$

- + No systematics in position
- + Mean distance between measured and ideal positions equivalent for noised and denoised image.
- + Lower distance for faint objects on denoised images.
- Larger spread of distances with denoised image.

Denoising?

- More tests to fully understand the impact of denoising onto astrometry.
- If verified correct, denoising processes might allow to measure parallaxes of very faint objects that are not normally within the reach of 4m telescopes using reasonable observing times.
- Compare parallax results with and without denoising.

Conclusions

- Parallaxes (I-5% precision) for 5 important calibrators of the BD/UCBD regime by end of 2014.
 - Experimenting the denoising --> interesting for faint detections, need to conclude.